LearnMore

ABTest(Personal Project) 본문

Programming/R

ABTest(Personal Project)

zionadd 2018. 10. 16. 15:50
ABTest

ABTest

• ABTest 실습문제 • datasets 패키지에 있는 mtcars라는 데이터셋을 메모리로 로딩하시오.

data("mtcars")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(psych)
headTail(mtcars)#내용조회
##                 mpg cyl disp  hp drat   wt  qsec  vs  am gear carb
## Mazda RX4        21   6  160 110  3.9 2.62 16.46   0   1    4    4
## Mazda RX4 Wag    21   6  160 110  3.9 2.88 17.02   0   1    4    4
## Datsun 710     22.8   4  108  93 3.85 2.32 18.61   1   1    4    1
## Hornet 4 Drive 21.4   6  258 110 3.08 3.21 19.44   1   0    3    1
## ...             ... ...  ... ...  ...  ...   ... ... ...  ...  ...
## Ford Pantera L 15.8   8  351 264 4.22 3.17  14.5   0   1    5    4
## Ferrari Dino   19.7   6  145 175 3.62 2.77  15.5   0   1    5    6
## Maserati Bora    15   8  301 335 3.54 3.57  14.6   0   1    5    8
## Volvo 142E     21.4   4  121 109 4.11 2.78  18.6   1   1    4    2
glimpse(mtcars)#구조파악
## Observations: 32
## Variables: 11
## $ mpg  <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19....
## $ cyl  <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, ...
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 1...
## $ hp   <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, ...
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.9...
## $ wt   <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3...
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 2...
## $ vs   <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, ...
## $ am   <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, ...
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, ...
summary(mtcars)#기술통게 분석
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000

•변속기유형(am)에 따른 연비(mpg) 차이에 대해 요약집계 분석을 수행하시오. •- 변속기유형(am) –> 0: 자동기어, 1: 수동기어 •- 연비(mpg) –> 1갤런당 주행마일

t<-tapply(mtcars$mpg, list(mtcars$am), mean, na.rm=T)

•변속기유형(am)에 따른 연비(mpg) 차이에 대한 가설검정을 실시하시오.

  1. 성과변수 정규성 검정
shapiro.test(mtcars$mpg[mtcars$am==1])
## 
##  Shapiro-Wilk normality test
## 
## data:  mtcars$mpg[mtcars$am == 1]
## W = 0.9458, p-value = 0.5363
shapiro.test(mtcars$mpg[mtcars$am==0])
## 
##  Shapiro-Wilk normality test
## 
## data:  mtcars$mpg[mtcars$am == 0]
## W = 0.97677, p-value = 0.8987
  1. 성과변수 분산의 동질성 검정
mpg_1<-mtcars$mpg[mtcars$am==1]
mpg_0<-mtcars$mpg[mtcars$am==0]
var.test(mpg_0,mpg_1)
## 
##  F test to compare two variances
## 
## data:  mpg_0 and mpg_1
## F = 0.38656, num df = 18, denom df = 12, p-value = 0.06691
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1243721 1.0703429
## sample estimates:
## ratio of variances 
##          0.3865615
  1. 성과변수 정규성 + 분산의 동질성 확인에 따른 최종 가설검정
t.test(mtcars$mpg~mtcars$am,mtcars,var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  mtcars$mpg by mtcars$am
## t = -4.1061, df = 30, p-value = 0.000285
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -10.84837  -3.64151
## sample estimates:
## mean in group 0 mean in group 1 
##        17.14737        24.39231

'Programming > R' 카테고리의 다른 글

Regression(Personal Project)  (0) 2018.10.16
Association Rule Analysis(Personal Project)  (0) 2018.10.16
'right' and 'include.lowest' parameter in cut() function  (0) 2018.08.28
t() function in table  (0) 2018.08.28
'useNA' parameter in Table  (0) 2018.08.28
Comments