Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- https://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html
- https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/nrow
- Latex is suck
- https://stackoverflow.com/questions/38976217/what-is-the-meaning-of-include-lowest-in-reclassify-raster-package-r
Archives
- Today
- Total
LearnMore
Support Vector Machines 본문
Introduction
- Using support vector machines (SVMs) to build a spam classifier.
Files included in this exercise
- ex6.m - Octave/MATLAB script for the rst half of the exercise
- ex6data1.mat - Example Dataset 1
- ex6data2.mat - Example Dataset 2
- ex6data3.mat - Example Dataset 3
- svmTrain.m - SVM training function
- svmPredict.m - SVM prediction function
- plotData.m - Plot 2D data
- visualizeBoundaryLinear.m - Plot linear boundary
- visualizeBoundary.m - Plot non-linear boundary
- linearKernel.m - Linear kernel for SVM
- [?] gaussianKernel.m - Gaussian kernel for SVM
- [?] dataset3Params.m - Parameters to use for Dataset 3
- ex6 spam.m - Octave/MATLAB script for the second half of the exercise
- spamTrain.mat - Spam training set
- spamTest.mat - Spam test set
- emailSample1.txt - Sample email 1
- emailSample2.txt - Sample email 2
- spamSample1.txt - Sample spam 1
- spamSample2.txt - Sample spam 2
- vocab.txt - Vocabulary list
- getVocabList.m - Load vocabulary list
- porterStemmer.m - Stemming function
- readFile.m - Reads a file into a character string
- submit.m - Submission script that sends your solutions to our servers
- [?] processEmail.m - Email preprocessing
- [?] emailFeatures.m - Feature extraction from emails
- ? indicates files you will need to complete
IDE : Octave_4.4.0
'Coursera > Machine Learning' 카테고리의 다른 글
Anomaly Detection and Recommender Systems (0) | 2018.10.16 |
---|---|
K-means Clustering and Principal Component Analysis (0) | 2018.10.16 |
Regularized Linear Regression and Bias v.s. Variance (0) | 2018.10.16 |
Neural Networks Learning (0) | 2018.10.16 |
Multi-class Classification and Neural Networks (0) | 2018.10.16 |
Comments