Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- https://stat.ethz.ch/R-manual/R-devel/library/base/html/table.html
- https://stackoverflow.com/questions/38976217/what-is-the-meaning-of-include-lowest-in-reclassify-raster-package-r
- https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/nrow
- Latex is suck
Archives
- Today
- Total
LearnMore
K-means Clustering and Principal Component Analysis 본문
Coursera/Machine Learning
K-means Clustering and Principal Component Analysis
zionadd 2018. 10. 16. 14:01Introduction
- Implement the K-means clustering algorithm and apply it to compress an image.
Files included in this exercise
- ex7.m - Octave/MATLAB script for the rst exercise on K-means
- ex7 pca.m - Octave/MATLAB script for the second exercise on PCA
- ex7data1.mat - Example Dataset for PCA
- ex7data2.mat - Example Dataset for K-means
- ex7faces.mat - Faces Dataset
- bird small.png - Example Image
- displayData.m - Displays 2D data stored in a matrix
- drawLine.m - Draws a line over an exsiting gure
- plotDataPoints.m - Initialization for K-means centroids
- plotProgresskMeans.m - Plots each step of K-means as it proceeds
- runkMeans.m - Runs the K-means algorithm
- submit.m - Submission script that sends your solutions to our servers
- [?] pca.m - Perform principal component analysis
- [?] projectData.m - Projects a data set into a lower dimensional space
- [?] recoverData.m - Recovers the original data from the projection
- [?] findClosestCentroids.m - Find closest centroids (used in K-means)
- [?] computeCentroids.m - Compute centroid means (used in K-means)
- [?] kMeansInitCentroids.m - Initialization for K-means centroids
- ? indicates files you will need to complete
IDE : Octave_4.4.0
'Coursera > Machine Learning' 카테고리의 다른 글
Anomaly Detection and Recommender Systems (0) | 2018.10.16 |
---|---|
Support Vector Machines (0) | 2018.10.16 |
Regularized Linear Regression and Bias v.s. Variance (0) | 2018.10.16 |
Neural Networks Learning (0) | 2018.10.16 |
Multi-class Classification and Neural Networks (0) | 2018.10.16 |
Comments