LearnMore

K-means Clustering and Principal Component Analysis 본문

Coursera/Machine Learning

K-means Clustering and Principal Component Analysis

zionadd 2018. 10. 16. 14:01

Introduction

  • Implement the K-means clustering algorithm and apply it to compress an image.

Files included in this exercise

  • ex7.m - Octave/MATLAB script for the rst exercise on K-means
  • ex7 pca.m - Octave/MATLAB script for the second exercise on PCA
  • ex7data1.mat - Example Dataset for PCA
  • ex7data2.mat - Example Dataset for K-means
  • ex7faces.mat - Faces Dataset
  • bird small.png - Example Image
  • displayData.m - Displays 2D data stored in a matrix
  • drawLine.m - Draws a line over an exsiting gure
  • plotDataPoints.m - Initialization for K-means centroids
  • plotProgresskMeans.m - Plots each step of K-means as it proceeds
  • runkMeans.m - Runs the K-means algorithm
  • submit.m - Submission script that sends your solutions to our servers
  • [?] pca.m - Perform principal component analysis
  • [?] projectData.m - Projects a data set into a lower dimensional space
  • [?] recoverData.m - Recovers the original data from the projection
  • [?] findClosestCentroids.m - Find closest centroids (used in K-means)
  • [?] computeCentroids.m - Compute centroid means (used in K-means)
  • [?] kMeansInitCentroids.m - Initialization for K-means centroids
  • ? indicates fi les you will need to complete

IDE : Octave_4.4.0

ex7.vol1.egg

ex7.vol2.egg


Comments